青春期雄性小鼠双酚A暴露对生殖功能及子代性别比的影响

李玉华1,2 段斐2 杨芬2 周小羽2 潘鸿海2 李扬1 李润生2
(1. 吉林大学白求恩医学院病理生理学教研室, 长春, 130021)
(2. 国家卫生与计划生育药具重点实验室、上海市计划生育科学研究所, 上海, 200032)

【摘要】目的 研究双酚 A(BPA)暴露对青春期雄性小鼠成年后生殖功能及子代的影响。方法 21 日龄 C57BL/6J 雄性小鼠每日腹腔注射 BPA 50 mg/kg 连续 7 d, 35 d 后检测成年后雄鼠附睾尾精子数量、精子畸形率、睾丸组织学变化; 与正常雄性小鼠配种, 观测生育力指标及仔鼠的出生情况。结果: BPA 暴露能引起小鼠附睾尾精子数量下降 20.6%(P<0.01); 精子畸形率增加 9.65%(P<0.05); 睾丸组织结构异常, BPA 暴露对雄性小鼠成年的生育力没有明显影响, 但能引起子代雄: 雌出生性别比升高。结论: 青春期雄鼠 BPA 暴露能引起成年雄鼠生育功能下降, 仔小鼠雄性比例增加。

关键词: 双酚 A (BPA); 生殖功能; 性别比

中图分类号: R994.6 文献标识码: A 文章编号: 0253-357X(2015)03-0141-05

双酚 A(bisphenol A, BPA) 是近几年公众和科学家关注较多的一种环境内分泌干扰物。BPA 在化学工业中具有广泛的用途, 常常用于制造多种高分子材料, 进而制造成各种日用品, 包括塑料制品, 由于 BPA 是脂溶性物质, 在高温、高脂、过酸、过碱条件下会从食品包装中游离出来, 从而进入人体; 人群的 BPA 暴露是非常普遍的[1]。虽然 BPA 属于低毒物质, 小鼠经口给予 BPA 半数致死剂量 (LD50) 为每公斤体重 2400 mg, 但是近若干年, 研究人员将 BPA 与很多疾病联系到一起[2]。其中 BPA 对生殖系统及子代影响的研究是争论和研究的热点[3]。目前大多数研究集中在围产期 BPA 暴露对子代成年期生殖系统的影响, 而对于在雌性青春期阶段 BPA 暴露的研究相对较少。本研究旨在探讨青春期雄性小鼠 BPA 暴露对成年后生殖功能及子代的影响。为认识 BPA 对人类生殖和发育功能的影响提供动物实验依据。

1 材料与方法

1.1 实验动物

21 日龄清洁级 C57BL/6J 小鼠, 体重 12 ± 2 g。购自上海斯莱克实验动物有限公司, 动物生产许可证号: SCXK(沪)2008-0003, 饲养环境温度控制在 24 ± 2 ℃, 相对湿度 40%~50%, 饲喂颗粒料, 自由饮水。

1.2 主要试剂

BPA 购自美国 Sigma 公司, Bouin 固定液购自上海升正生物科技公司, HE 染液购自上海虹桥乐翔生物公司。
1.3 BPA 暴露

21 日龄雄性小鼠 60 只，称量、编号，按照体重质量随机分成 4 组。每组 15 只，分别为溶剂(玉米油)对照 I 组和 II 组、BPA 实验 I 组和 II 组。BPA 剂量为每日 50 mg/kg, qd, 连续 7 d，以腹腔注射方式给药。

1.4 精子参数分析

包括附睾尾精子计数和精子形态学分析。给药后 35 d，BPA I 组小鼠和对照 I 组小鼠用于取材分析：脱颈椎处死小鼠，剪取两侧附睾尾，放入盛有 2 ml 生理盐水的平皿中。用眼科剪将附睾纵向剪 1 刀，再横向剪 3~4 刀。37 ℃温箱中漂洗 10 min，制成精子悬液。取 5 μl 放入精子计数板计数。另取 5 μl 精子悬液制成涂片，室温自然干燥。用体积分数 75% 乙醇固定 2 min，室温晾干。用 20 g/L 伊红染色 15 min，清水冲洗，室温晾干。用高倍镜观察精子形态。按照文献[4]判断小鼠精子畸形种类。每个样品至少检查 200 个精子，统计精子的畸形率。

1.5 睾丸组织形态学分析

小鼠睾丸用 Bouin 固定液固定 24 h 后，经梯度酒精脱水、二甲苯透明、浸蜡后包埋成蜡块，切成 5 μm 石蜡切片，常规 HE 染色后显微镜下观察睾丸组织形态学变化。小鼠睾丸每张切片统计 30 个生精小管，记录组织形态学正常和异常的生精小管数量，异常类型包括：生精细胞排列紊乱、脱落、空泡化等，计算每组异常生精小管的比例。

1.6 雄鼠生育力观测

BPA 暴露 5 周后，BPA II 组小鼠和对照 II 组小鼠与未处理正常雄性小鼠 1：2 配种，观察受孕小鼠妊娠及分娩情况，记录每胎次的死、活仔数，雌雄数量、出生体质量及外观变化等。生育指数 = 生育数/总数 × 100%，性别比 = 雄性数量/雌性数量 × 100。

1.7 统计学处理

所有数据用 SPSS 20.0 软件进行统计分析。计量资料用均数 ± 标准差 (x±s) 表示，均数间的两两比较用 t 检验。P<0.05 认为差异有统计学意义。

2 结果

2.1 BPA 暴露对成年后小鼠精子质量的影响

附睾尾精子计数结果显示，BPA 组小鼠精子数比对照组下降 20.6%, P<0.01(图 1)。精子形态学观察结果显示，BPA 引起的精子畸形主要发生在头部，尾部畸形较少。BPA 组精子畸形率增加了 9.65%, P < 0.05(图 1)。

2.2 BPA 暴露对成年后小鼠睾丸组织形态学影响

睾丸组织 HE 染色观察，对照组睾丸大多数曲细精管排列紧密，管内可见不同生精阶段的生殖细胞有序排列，也有少量曲细精管可见生精细胞脱落(图 2A)。而在 BPA 处理组中，可见生精细胞与基底膜间隙变大，有较多的曲细精管管腔中生精细胞缺失，管腔内有大量脱落的生精细胞，甚至管腔完全封闭(图 2B、2C)。定量统计结果显示，BPA 组组织形态学异常的小管比例显著高于对照组，差异有统计学意义(P<0.01)(图 2D)。

2.3 BPA 暴露对成年后雄鼠生育力和子代发育的影响

BPA 对雄性生育力与子代的影响详见表 1。结果显示，BPA 染毒小鼠成年后生育指数与对照组没
表 1 BPA 对雄性生育力与子代小鼠的影响(±s)

<table>
<thead>
<tr>
<th>指标</th>
<th>对照组 (Control group)</th>
<th>BPA 组 (BPA group)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>生育指数(%)</td>
<td>93.3</td>
<td>86.7</td>
<td>0.54</td>
</tr>
<tr>
<td>Fertility index</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>每胎平均产仔数(n)</td>
<td>6.55 ± 1.76</td>
<td>6.39 ± 2.15</td>
<td>0.66</td>
</tr>
<tr>
<td>Pups delivered per litter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>存活率(%)</td>
<td>86.2 ± 16.1</td>
<td>79.2 ± 26.1</td>
<td>0.46</td>
</tr>
<tr>
<td>Survival rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>出生体重(g)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>雌鼠 Female mouse</td>
<td>1.33 ± 0.11</td>
<td>1.34 ± 0.12</td>
<td>0.82</td>
</tr>
<tr>
<td>雄：雌性别比</td>
<td>101.4</td>
<td>118.8</td>
<td>0.04</td>
</tr>
</tbody>
</table>

3 讨论

BPA 是一种环境内分泌干扰物，在结构上与雌激素相似，具有微弱的雄激素样作用和抗雄激素作用。有研究表明，BPA 能对动物及人类产生广泛的有害影响，包括免疫系统、心血管系统和生殖系统等。尽管目前关于 BPA 对雄性生殖系统毒性的
研究已经较多，但存在着很多不一致的报道。这可能是因为不同染毒剂量、染毒途径以及给药的时机等会导致不同的生殖毒性。

目前大多数 BPA 研究集中在围产期 BPA 暴露后对仔鼠成年后生殖系统的影响，而对雄性青春期 BPA 暴露的研究相对较少。本实验中，我们通过腹腔注射给予雌性青春期小鼠短命的 BPA 暴露，与溶剂对照组相比，雌性青春期、雌性成年后的小鼠 BPA 暴露后的精子数量显著增加。表明青春期短命的 BPA 暴露也能严重影响雄鼠成年后的精子质量，这与很多围产期 BPA 暴露的研究结果是一致的。睾丸组织切片显示，BPA 处理组睾丸曲细精管壁中出现较多的生精细胞与基底膜间隙增大，生成精子脱落至管腔等病理变化，提示曲精管中的支持细胞功能可能受到损伤。睾丸支持细胞为生成精子提供激素及营养等，并且与相邻的支持细胞融合成紧密连接，构成血-睾屏障的一部分。BPA 能够穿透血-睾屏障，有文献报道 m，BPA 可以对支持细胞的直接作用，影响睾丸中乳酸脱氢酶和 6-磷酸葡萄糖脱氢酶的活性，从而造成生成精子从支持细胞中脱落，影响了精子的发生、发育。另外，本研究观察到 BPA 引起的精子畸形主要发生在精子头部，因此 BPA 可能直接和/或间接地与精子 DNA 发生作用。BPA 引起精子畸形率增加，一定程度上反映 BPA 的生殖毒性。

本研究另一个出发点是探讨雌性青春期 BPA 暴露引起的精子发生异常是否对生育力以及子代小鼠产生影响。我们选择与没有染毒的正常雌性小鼠繁殖产生子代。结果观察到，尽管 BPA 能引起小鼠生殖功能的下降，但是雌性的生育力与对照组没有统计学差异。提示雌性青春期小鼠在每日 50 mg/kg BPA 暴露水平下，对成年后的雄性小鼠生育力没有明显的损害作用。BPA 对每胎平均产仔数、仔鼠出生体质量等没有影响；子代小鼠的存活率组间差异虽然无统计学意义，但是 BPA 暴露有引起子代存活率下降的趋势。因此雌性短命的 BPA 暴露并不具有明显的胚胎毒性。事实上，BPA 对雌性子代的影响，目前并没有明确的结论。Oishi 等报道 m，每日 BPA＞235 mg/kg 剂量能够降低胎儿出生体质量，而 Ty1 等报道 m，每日 BPA＜5 mg/kg 的暴露剂量，对多种生殖相关指标（如胚胎指数、精卵数量等等）都没有影响。只有在每日 50 mg/kg 和 500 mg/kg 高剂量暴露下，才能导致每胎数量和子代存活率下降。

BPA 在生殖毒理学方面的研究报道比较多，但通常不关注出生性别比，有积累结果显示，出生性别比处于正常范围内。而我们分析子代的性别比时，观察到了一个有意思的现象，即 BPA 处理组小鼠产生更多的雄性子代，性别比发生了失衡。目前有关 BPA 导致性别比失衡的报道很少。Izumi 等研究 BPA 对家蝇生命周期的影响时观察到 m，当卵和幼虫暴露于 BPA，其成虫的性别比更倾向于雄性家蝇。在一项研究 BPA 对鹿鼠（deer mouse）性选择的研究中，研究者也观察到了子代性别比出现偏差的情况 m，8~12 周龄的雌鼠，配种前 2 周开始饲喂每公斤含 50 mg BPA 的饲料直至断乳。出生的子代中雄性比例高于雌性比例，达到 65%。但是作者没有做进一步的研究。

7~12 周龄的雌鼠暴露于四氯二苯并-氯-二恶英 (TCDD)，然后与正常雌鼠繁殖产生子代，能够增加雌性小鼠的出生比例，而且仅与父系暴露有关 m。研究者利用定量 PCR 技术，检测了 Y 型精子特异的 SRY 位点和 X 型精子特异的雌激素受体 (AR) 位点，检测了 X/Y 型配子比例和 2-细胞期胚胎的性别比。结果观察到 Y 型精子/X 型精子的比例并没有差异。但是 TCDD 暴露组的 2-细胞期胚胎性别比显著低于对照组；因此子代性别比下降的发生时期是在受精时期而不是精子发生阶段。也有研究者认为 m，TCDD 暴露导致性别比改变，其决定性的原因是由于 TCDD 引起父系睾酮浓度降低，导致 Y 型精子的受精能力降低，但是其发生机制仍然不清楚。

本研究中为什么 BPA 会引起雄性后代比例的增加？我们检测 BPA 是否引起 F0 代产生的 X/Y 型配子的比例出现了偏差，但 Ishihara 等的荧光定量 PCR 检测 Y 型配子特异的 SRY 基因结果显示 m，BPA 组和对照组的 X/Y 型配子的比例基本一致，因此排除了 X/Y 型配子比例失调这一原因。另外理论上还存在于其他可能的原因，如 Y 型精子的受精能力相对增加等 BPA 引起子代雄性比例增加的机理还需做进一步的研究。

内分泌干扰物对出生性别比的影响已经受到研究者们的关注。如人流行病学调查资料显示 m，作为内分泌干扰物的代表——乙烯雌酚 (DES)，孕妇在
妊娠早期暴露于 DES，其男性子代的比例明显升高。另一项调查研究揭示[17]，在 1977~1996 年间父、母
亲暴露于 TCDD，随着父亲血清中 TCDD 浓度的增加，生女孩的可能性也加大，而 19 岁之前有 TCDD
暴露史的男性生女孩的几率则显著增加。男性及女性比率为 0.38。这项研究表明男性在青春期前和青春期
TCDD 暴露，于子代性别比失衡有关。因此，环境内分泌干扰物对人类的影响值得引起重视。中国持续
近 30 年的性别比升高，除了主观因素(人为因素)的影响，并不能忽视客观因素所起的作用，如人群广泛
地暴露于多种环境内分泌干扰物等，以至自然环境条件的变化，可引起人生理机能的改变而可能导致的性
别比失衡。

本研究结果表明在青春期即使是短时间内BPA
暴露，也能对成年后雄性的生精功能产生不良影响，并
且能引起子代性别比失衡。因此，提示我们在制
造食品包装材料时，不使用 BPA 或者使用安全的替
代物;在日常生活中，要科学合理地使用各种塑料制
品，以减少人体的 BPA 暴露，保护生殖健康。

参考文献:

population to bisphenol A and 4-tertiary-octylphenol: 2003-
chronic diseases: current evidences, possible mechanisms,
expert panel report on the reproductive and developmental
toxicity of bisphenol A. Birth Defects Res B Dev Reprod
of the mouse sperm morphology test and other sperm tests
in nonhuman mammals. A report of the U.S. Environmental
Protection Agency Gene-Tox Program. Mutat Res, 1983,
[5] Li D, Zhou Z, Qing D, et al. Occupational exposure to
bisphenol-A (BPA) and the risk of self-reported male sexual
[7] 吕毅, 吕海霞, 王洪海. 等. 双酚A对雄性仔鼠生殖功能的影
effects of bisphenol A to spermiogenesis in mice and rats.
[9] Takahashi O, Oishi S. Testicular toxicity of dietary 2,2-
bis(4-hydroxyphenyl) propane (bisphenol A) in F344
reproductive toxicity study of dietary bisphenol A in CD
reproductive toxicity study of dietary bisphenol A in CD-1
A on the development, growth, and sex ratio of the housely
53.
expression of sexually selected traits by developmental ex-
posure to bisphenol A. P Natl Acad Sci USA, 2011, 108(28):
11715-20.
ratio of offspring of the paternal 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD) exposure decrease: in the spermatozoa
[15] James WH. The offspring sex ratios of male mammals treated
with dioxin before mating: comment on the paper of Ishihara
among women exposed to diethylstilbestrol in utero. Environ
trations of dioxin and sex ratio of offspring. Lancet, 2000,
355(9218):1858-63.

(2015 年 1 月 12 日 收稿)